REVOLUTIONIZING THE FUEL MANAGEMENT PROCESS FOR AIRLINES
It’s my pleasure to introduce this whitepaper, which shares much of what my colleagues and I have learnt from our 20 years of work in aviation fuel management.

Since my first experience of the airline industry – as a software consultant for Lufthansa in 1995 – a lot has changed in airline fuel management and in the software world. Much has changed for me too. The company I started in 2000 now owns a software platform that helps manage 25% of the world’s aviation fuel. The FuelPlus system helps 51 airlines operate more efficiently every day, including carriers that are as high profile as British Airways, ANA and Etihad. I’m incredibly proud of our achievements.

I also recognize that these achievements have been possible thanks to the support of the industry and our customers. As we often say at FuelPlus, our software has truly been built ‘for the industry, by the industry’. Leading carriers and fuel suppliers have helped to shape our products, through our annual user group, joint development projects and industry associations. We spend time listening and learning to ensure we understand the fuel management process from start to finish in great detail. So it seems only right that we now share what we have learnt more widely, through the publication of this whitepaper.

The knowledge and experience we have amassed has enabled us to build intuitive applications that streamline processes, reduce errors, and make it simpler to gather, share and act on fuel information. This empowers teams and saves airlines and fuel suppliers time and money. You will see real examples of this on pages 20-28 of this whitepaper.

Our longer-term vision is to fully harness the potential of automation by developing the first completely ‘self-driving’ aviation fuel management system. This will allow teams to spend even less time on routine administration and even more time on valuable activities. We also want to enable seamless collaboration between all parties involved in aviation fuel management – through IATA’s industry-wide data standards and through an exciting collaboration tool for airlines and fuel suppliers, which we’re developing. Look out for more on that later in the year.

But for now, we hope that this whitepaper will help educate the aviation industry about the operational fuel management process for airlines – its complexities, its key challenges and also how to start addressing these. We welcome your comments.
Introduction

According to several IATA and ICAO reports, fuel is one of an airline’s largest expenses; it can account for between 18-30% of its operating costs. Therefore, the careful management of fuel is a major concern for airlines and that is why most establish a commercial fuel management program. The aim of this program is to ensure that different business areas in the airline work together to plan, forecast, monitor and analyze the overall fuel demand, supply, consumption and expenditure.

A number of factors make fuel management difficult. For example:

- Volatile jet fuel prices
- Availability of the right data
- Data quality
- Dependence on legacy systems
- Requirements to meet compliance standards
- Separation of fuel management processes and data into departmental silos
- Requirements to meet compliance standards
- Slow manual processes.

In this whitepaper, we have used our insight gained from 20 years of work with leaders in the airline industry, to outline the key challenges of managing aviation fuel and the effective solutions implemented by world leading carriers to counter them.
The Fuel Management Process for Airlines

For many airlines today, the end-to-end fuel management process is similar to that depicted in Figure 1a. The complex map involves an array of teams within the business: Procurement, Flight Operations, Logistics, Finance and Fuel Management. Due to this complexity, airlines face a number of key challenges. To discuss these in turn, we have organized the fuel management process into six key stages.

FIGURE 1A
1. STRATEGIC PLANNING

The Flight Operations team will undertake the fuel demand planning on a yearly basis. This annual fuel volume forecast is primarily what fuel managers use to generate a budget plan. The volume forecast is a critical piece of work because it is the foundation for all fuel tenders and contracts, as well as budget and inventory planning. The information needs to be accurate to enable effective decision-making across the airline.
In order to plan precisely, the fuel data must be accurate. Historical data, consisting of actual fuel uplifts and consumptions, is the most accurate information to use to calculate statistics. However, this is notoriously hard to obtain since this information comes from thousands of fuel messages, tickets and multiple Excel spreadsheets. Additionally, historical data is usually stored within a separate, standalone IT system or might only exist in a manual format, so consolidating this takes a lot of time and resources.

If statistical historical data is not available, Flight Operations teams will often rely on fuel consumption averages per hour for each aircraft type – either their own internal averages or those supplied by the manufacture. Using such data for calculations is problematic because it does not account for factors like seasons, weather, short or long-haul flights and so on.
Tendering

Once the fuel volume forecast, supply strategy and fuel budget plan are determined, Procurement will use the fuel volume forecast for the next business activity: tendering. Procurement will publish tenders to selected fuel suppliers at specified locations. Their key aim is to ensure that the fuel volume requirement is met and at the best price.

However, there are many variables in the tenders. Fuel suppliers may respond using different payment terms, jet fuel price indexes, units of measure, currencies, and so on. The challenge is the ‘normalization’ process, where fuel managers perform conversions and adjustments so they can compare the bids ‘like-for-like’ to ensure that the best deal is attained.

This is largely a manual task involving various administrative and data capturing activities, so it is inefficient and prone to human error. For an airline, this is a major concern because errors in data collection may result in bids being evaluated incorrectly, which could lead to a less favorable supplier winning the contract. It could also lead to an under or over-supply of fuel, which may incur surcharges.

A recent study by the International Air Transport Association (IATA) supports our observations in this area. IATA found that up to 80% of the effort spent in a tendering exercise is caused by inefficient and time-consuming processes.

Tendering for aviation fuel has further complexities. Firstly, airlines often want to spread fuel demand across several suppliers to increase supply security. Secondly, there is a need for transparency throughout the tender process, particularly the selection of suppliers. This is because tendering is one of the first areas to be audited; after all, large sums of money are involved.

We have found that most airlines adhere to strict evaluation processes and approval procedures, such as the stipulation that all communications and negotiations are documented. This allows auditors to ensure that tenders have been conducted fairly and according to regulations. Tenders often have numerous rounds of negotiations and all these rounds need to be documented and available for scrutiny. This can be difficult if procedures are largely manual or not formalized.
Contracts

Contract management is complex because of the sheer number and variety of contracts that are in place. Airlines typically have extensive networks, which include many locations. Fuel supply contracts need to exist for each location and these contracts need to cover supply of the product (the fuel), associated services and for some locations, storage and fuel logistics.

Due to the volatility of jet fuel prices, product contracts often contain a pricing formula that is based on daily energy price assessments. In addition, the pricing of services can depend on a range of external factors, such as the time of day or night the fuel is delivered or whether the fuel is delivered via a truck or hydrant based system.

The location contract is made up of many price components, which are priced based on for example, fuel volume, the fueling event, and other price components that may need to be applied. For example, certain duties, fees and taxes are only applied to domestic flights. Contracts form the pricing base for many other processes such as accrual calculation, period closing, and invoice verification. Therefore, it is very important for airlines to correctly document the contractual agreement with suppliers, so they can avoid complications further down the line.

It is clear that contract management is a critical activity, which requires constant attention. Price updates and contracted volumes need constant monitoring so there must be an effective flow of information in a timely and efficient manner. Often, airlines only have one existing option: to manually gather, link and update all the necessary data (contract terms, fuel price indexes, fuel volumes, duties, fees and taxes, and actual performance). This is clearly a huge undertaking. It is extremely time consuming, inefficient and reliant on individual experience and know-how, which does not facilitate knowledge sharing.
This stage of the fuel management process is mostly related to airlines that buy fuel for self-supply; that is to say they operate their own logistics network including pipelines, trucks, and storage tanks. When this is the case, the Logistics team must undertake a regular forecast of their inventory to ensure supplies are maintained at the right level. Having access to the Fuel Procurement team’s flight allocation plans is essential, since these will indicate whether each flight requires fuel from an into-plane supplier or from their own inventory.

In addition, it’s likely that Procurement will want to occasionally conduct spot trades and deviate from the planned supply strategy. These decisions need to be clearly documented and communicated.

2. OPERATIONAL SUPPLY PLANNING
Reliable consumption plans
To be able to accurately project an airline’s fuel inventory and nominate suppliers on a monthly basis, the Logistics team needs to know the planned incoming and outgoing volumes of fuel. The demand plan and flight allocation plan (see section 1) should provide this, but we now know that these are not always very accurate. Operating an efficient fuel inventory – one that does not run dry but that also minimizes capital costs – is essential to an airline’s financial sustainability.

Handling tankering
Dispatch need access to up-to-date location prices in order to decide whether to tanker fuel or not; this is challenging if they are not held centrally. Location prices might be calculated as a weighted average of fuel prices related to into-plane supply and the storage out price.

Handling spot trades
For spot trades, the main challenge is for Accounting. They need access to all the right documentation (contracts, delivery documents and invoices) and to be able to check these against each other to ensure they accurately calculate accruals and payment.
The replenishment stage applies to airlines that engage in self-supply activities. While stage 2 was concerned with planning and setting up self-supply, this stage is about executing that plan.

During the self-supply process, the fuel is moved between locations using a number of transportation options. These may include pipelines, trucks, barges, trains and so on.

The documentation related to these movements is used by the airline and supplier for transfer of ownership, invoicing and accrued liabilities.
Access to movement and transportation documents

The Logistics team needs to track where fuel is at any one time and keep the inventory up-to-date. To do this, they need to see the official movement and transportation documents as quickly as possible after a movement has taken place. This can be difficult because these documents often get passed between the shipper and storage operator and are not always sent to the airline straight away.

Due to the size of these transactions, the delay has a significant impact on the airline. Determining the correct inventory levels is crucial in order to predict future requirements, determine accrual liabilities and book asset values.

The delay in receiving the documentation also impacts Finance because they need to calculate the expected costs of the fuel delivery, including items like, inspection cost, transportation cost, and any gains or losses in fuel volume during transportation.
During this stage, the Flight Operations team needs to collect all the data related to fueling activities that have taken place – namely flight events, fuel tickets and fuel messages. This enables the airline to calculate the volume of fuel received and the cost of this. If the airline is self-supplying, fuel tickets are also used to update inventories.

For any airline that wants to manage its fuel effectively, it’s essential that they have an up-to-date and accurate picture of fuel received and its cost. It is also crucial for Finance, so that they can calculate accrued liabilities for this part of the operation.
Access to movement and transportation documents

Collecting good quality data for fuel uplifted, and in a timely way, is a serious problem for many airlines. Information is often missing or inaccurate. Fuel tickets for example, can be in paper or electronic format. Paper fuel tickets often get lost, while electronic tickets are often provided in different formats, which make it difficult to store the information in a database. Usually a lot of manual work is required to collect and clean this data.

Even if the airline has the right data from all of the fuel tickets, they need to be able to link these to their operated flights and effective contracts, in order to determine the cost of each fueling event. Given the number of fuel tickets received by an airline each year – hundreds of thousands – this becomes a significant and on-going task.

Calculating fuel consumption is not straightforward either because you need to know fuel levels in the aircraft before it sets off for journey A and then before it sets off for journey B. This information is stored in two separate flight events and so this data needs to be extracted and linked together.

All of these barriers can lead to missing or inaccurate fuel consumption data. This negatively affects the calculation of fuel volume used and its cost, reducing the airline’s ability to manage its fuel effectively. It also jeopardizes the route profitability calculation, which is essential for strategic decision-making, and makes it very difficult to undertake the EU Emissions Trading Scheme (ETS) calculations. All airlines operating flights in the European Economic Area (EEA) are legally required to undertake these complex calculations and submit their figures annually. The introduction of the Carbon Offsetting and Reduction Scheme (CORSIA) in 2021, which will apply internationally, will only exacerbate this issue.
5. PERIOD CLOSING

The closing stage is where Finance collects all of the accrued liabilities for input into the journal entry. The primary activity at this stage is to ensure that the right information is in place. This requires a combined effort from the Accounting team and Flight Operations. It is crucial that Flight Operations can verify and check information related to flights and fueling events, so that Accounting can perform a reconciliation on the actual fuel volume used.

It is essential that all airlines have an up-to-date and accurate picture of fuel volumes received and their subsequent costs, so that fuel departments can make the right decisions at the right time.

5A.

CHALLENGES

Accurate accounting

A key challenge at this stage is to have up-to-date figures for accruals in the accounting currency of the airline. The currency of an invoice can be different to the accounting currency, which means that the accruals need to be recalculated daily, based on the latest available exchange rates. If this recalculation is not done properly, the accruals can be short by millions, negatively affecting the balance sheets.
The verification of a fuel invoice is the final stage of the fuel management process for airlines. Currently, fuel invoices are submitted either as a paper document (including scanned, emailed or faxed invoices) or as an electronic file (those that can be received and processed by the system electronically, for example XML or EDI files.)

The fuel invoice needs to be verified against information that is owned by different departments – Procurement, Accounting and Operations – and once the airline agree that the invoice is accurate, then Finance will pay the supplier. Typically, an into-plane invoice will consist of the volume of fuel, the cost, and if applicable, duty, fees and taxes. Finance will need to check that the invoice items match the actual documented event, the fuel volume received and the agreed prices (based upon the contracts). If there are discrepancies, the relevant teams are alerted and must advise Accounting whether to accept or reject the invoice item. Once the invoice is fully processed, then payment can be approved and the journal entries are generated for the financial system.
A number of key challenges are evident at this stage. Firstly, the number of invoices that are received can be very problematic when it comes to processing and reconciling. For some large airlines, the number of invoices can be hundreds of thousands each year.

The primary challenge will be capturing paper invoices into the airline’s IT system. Paper invoices can vary greatly in layout and so a significant amount of manual data entry must take place, which can be time consuming and resource-intensive.

Furthermore, for electronic invoices, there could be many different items listed, including the product (jet fuel) price, the supplier’s differential, into-plane service fees, transport fees, hook-up fees and other duty, fees and taxes. All of these types of cost need to be registered in the airline’s system before verification can start.

Some airlines lack the systems in place to verify each invoice, and the number of line items present, often result in airlines performing less accurate checks. For example, Accounting teams usually do one or more of the following:

- Approve invoices based on a historic average fuel volume for that flight
- Check only a sample of invoices
- Approve invoices based on quite high tolerances (e.g. “It’s within 5% of the fee we were expecting so we will approve it”).

These less comprehensive checks increase the risk of inaccurate invoices being paid. This can mean airlines end up paying for:

- Fees that were not in the initial contracts
- Duplicated invoices
- Flights for other airlines
- Flight events that did not take place due to cancellations.

For Accounting to conduct these checks, it is crucial that there is communication with the other teams, including Procurement, Flight Operations and Logistics (for airlines that self-supply). If information is not stored centrally and is not accessible, invoice reconciliation will take longer.

An additional requirement for airlines is to document the invoices that are accepted or rejected and generate audit trails for all relevant accounting activities. This is to comply with the internal and external audit requirements. Some systems used by airlines can be difficult to audit and might not have essential compliance features, such as the ability to identify users that have accepted significant invoice discrepancies.

The final challenge is that payment terms for each location contract can differ, so keeping track of all of these can be difficult. Payment terms need to be met because delayed payments can result in fines. Also, the relationship with the supplier can be harmed, especially when negotiating next year’s contracts.
A streamlined fuel management process

Based on our 20 years of experience with the world’s leading carriers, we have developed a model for a streamlined fuel management process, which overcomes the traditional challenges outlined above. This model is depicted in figure 1b and is based on three pillars: centralization, automation and workflow. It has already been adopted successfully by some of the world’s major airlines, with quantifiable benefits.
THE THREE PILLARS

1. Centralized data
The integration of all fuel data into a centralized fuel repository allows a seamless flow of information. This enables all business functions across the organization to easily access up-to-date data that is relevant to them. For example, actual fuel uplift and consumption figures uploaded by Operations, can be easily retrieved by Planning for their annual budgeting. Centralizing data can also prevent a duplication of effort and reduce the risk of using outdated figures.

2. Automation
As we have outlined in the first section of this whitepaper, in the traditional model, many activities rely heavily on manual and labor-intensive tasks. For example, tendering, monitoring of market prices and invoice verification. By introducing an element of automation to many of these activities, we can bring significant benefits, such as:

- Increased business efficiency
- Improved accuracy of information because there are fewer manual entry errors
- A higher level of compliance
- Less dependence on individual knowledge and greater knowledge transfer.

Automating routine, manual processes will also enable airline employees to spend time on more value adding activities, such as analyzing and interpreting figures for strategic decision-making and adding competitive advantage.

3. Workflows
The complexity of an airline’s fuel management process and the number of teams involved, make it difficult to control, from beginning to end. Yet it is imperative that airlines intently monitor processes and adhere to internal and external policies. This is where workflows can help. By implementing the previous two pillars (centralization and automation), airlines can also use workflows and benefit from the advantages they bring.

Workflows focus on sets of activities in processes that are of sequential or parallel nature, for example bid approval or invoice payment approval. When standardized workflows are applied, the organization has complete control over how these activities are performed and by whom, and can optimize processes to stay competitive. This has obvious benefits for business efficiency and sustainability (such as less reliance on individual knowledge) as well as for transparency and compliance.
HOW ARE AIRLINES BENEFITTING FROM THE THREE PILLARS?
The problem:
A customer was taking two weeks to prepare and deliver a fuel budget. The calculations relied on input from the other departments and they were performed using several Excel spreadsheets with complex formulas. Any small changes to the demand plan meant that the budget needed to be reworked, which would take up to one and a half weeks.

The solution:
Automation and centralized data.
The customer implemented our streamlined model for fuel management, assisted by the FuelPlus airline-One software platform. The system’s advanced Planning Module enables them to significantly improve their budgeting process. It allows them to import standard schedules, calculate a volume forecast and effectively produce a fuel budget within hours. If changes are made to the demand plan, then airline-One can automatically recalculate the budget.
Tendering

The problem:
A number of customers relied solely on manual processes for tendering, including bid analysis using Excel sheets. This made the tender process very time consuming and also prone to human error.

The solution:
Automation.
With airline.One’s Tender Module, supplier bids can be loaded automatically using the latest IATA XML tender standard. The airlines can now easily normalize and rank bids that are submitted in different currencies, or are based on different market indexes, or have different invoice frequencies and payment terms. This helps them to reduce unproductive manual activities and to ensure that bids are compared like-for-like.
Demand planning for inventory

The problem:
The customer did not have the ability to accurately forecast the fuel demand on storage inventories. This caused them to schedule fuel deliveries at incorrect times, leading to supply shortages and over-supply; this had an impact on cash flow.

The solution:
Centralized data and automation.
airline. One has demand planning capabilities that now allow the customer to use the ‘just-in-time’ inventory strategy, preventing outages and improving the management of cash flow. The expected fuel releases are forecasted using the fuel volume forecast plan. These volumes are matched with the current inventory volume and scheduled deliveries, to provide an accurate inventory forecast.
Flight allocation

The problem:
At certain airport locations, airlines want to control the allocation of fuel supplies (the combination of jet fuel source and fueling service) to flight events themselves. This enables the airline to manage the volume share between suppliers and to forecast the fuel volume that they want to self-supply. This means specifying exactly which into-plane agent should provide fuel for each flight leaving that location.

For one airline, this activity required someone to manually update multiple Excel spreadsheets on a weekly or monthly basis, in order to ensure that each supplier’s contracted location share was met. This was of course time consuming and prone to human error.

The solution:
Automation.

The customer implemented the Flight Allocation Module in airline.One, which automates much of the flight allocation process. This reduces manual administration, improves accuracy and saves time. The module also still allows airlines to retain complete control and enables them to plan allocations in advance more easily and accurately. This means that the customer gains a clearer picture of their long-term fuel requirements for each fuel supplier and into-plane agent. As a result, they have been able to improve the relationship with the suppliers and negotiate a better price, by guaranteeing them a certain number of long-haul flights.
The problem:
An airline did not have access to accurate fuel consumption information for each leg and flight event. As a result, they were not able to accurately provide fuel statistics, which is the prerequisite for optimal dispatching and financial planning.

The solution:
Automation and centralized data.
The customer implemented airline.One, which automatically captures and processes the data from flight events, fuel messages and fuel tickets, providing accurate consumption information, which can be used by all teams. As a result, the customer can now provide accurate fuel consumption statistics, which has enabled it to optimize the dispatch operation and reduce its total annual fuel consumption by 5%.
Closing accounting period

The problem:
It was taking one airline customer 15 days to close the accounting period. This was because of the time it took to perform the following tasks manually:

- Collect fuel data from all the different outstations and departments in the airline
- Ensure that the contract prices are up-to-date
- Ensure that the latest exchange rates are available.

The solution:
Centralized data, automation and workflows.

By implementing airline.One, the customer has been able to reduce the closing period to two days. As well as centralizing fuel data so that all teams have appropriate access, the software automatically updates contract prices using daily feeds from providers such as Platts, OPIS and Global Insight. It also provides estimates for missing fuel tickets based on statistical fuel uplift data and imports the latest exchange rates so that accruals are recalculated daily into the accounting currency.
The problem:
Many leading carriers we work with find it a challenge to coordinate different departments and resources when resolving invoice discrepancies.

The solution:
Workflows and automation.
One major airline requested a set of features that would allow them to better control and organize the entire invoice checking process, from the loading of the invoice to payment approval, based on a predefined workflow. We responded by incorporating this workflow into airlineOne so that airlines can now seamlessly connect various teams – e.g. Purchasing, Operations, Finance – in order to quickly resolve large volumes of invoice discrepancies, while preserving segregation of duties and complying with audit requirements.
Handling partial payments

The problem:
One customer was receiving around 8,000 paper invoices each month. Their existing accounting system didn't allow them to partially pay invoices, so when one or more of the invoice lines were incorrect, the whole invoice was held back. This was negatively impacting on the relationship with the fuel supplier, who increased the differential in their contract during the next round of negotiations.

The solution:
Automation and workflows.
Unlike generic IT or ERP systems, airline. One has been specifically designed for the aviation fuel management process and its particular needs. By using this solution, the customer can now partially pay invoices and resolve discrepancies faster using automated workflows. As a result, all invoices can be checked, accuracy has dramatically increased and fewer staff are needed to undertake invoice verification.
Conclusion

The aviation fuel management process is extremely complex and involves multiple teams (internal and external) and a wealth of data. It’s also dependent on a range of external factors, many of which are highly volatile – oil prices and exchange rates as an example.

Traditionally, airlines have attempted to improve efficiency by customizing generic ERP systems or buying off-the-shelf financial software, but these are not always fit for purpose because they have not been built with the unique characteristics of aviation fuel management in mind.

For these reasons, airlines encounter a significant number of challenges at each stage of the fuel management process, which prevent them operating as quickly and efficiently as they would want.

The common themes to these challenges are:

- **Data: volume, quality and access**
- **Reliance on manual processes and disintegrated teams**
- **Pressure for audit trails and compliance.**

From our 20 years of collaboration in the industry, we know that these challenges can be surmounted. Airlines need to incorporate solutions that:

- **centralize all of their fuel data**
- **automate the labor-intensive manual processes**
- **use standardized processes and workflows.**

This will result in airlines that are more efficient at managing their largest expense, and are therefore more profitable, sustainable and compliant.
FuelPlus is the world’s number one provider of aviation fuel management software. We help airlines and fuel suppliers save time and money. More than 50 airlines, managing around 25% of the world’s commercial aviation fuel consumption, already use our products and services. More large and mid-size airlines trust us than any other fuel software company.

Focused on aviation fuel management

We are more than software; we are aviation fuel experts. We have been helping airlines get the edge since 2000 and that focus has enabled us to build the most complete, powerful and user-friendly solution in the industry.

As well as our own software, we are also working on solutions that enable seamless collaboration between all parties involved in aviation fuel management, because we believe there is potential to bring significant benefits through this. As an IATA strategic partner for example, we are working with the industry to develop new data standards.

Designed for the industry, by the industry

The combined experience of more than 50 global airlines and their fuel suppliers has shaped our platform. Through our annual user group, joint development projects and industry associations, we listen and learn. The result is a software platform that incorporates industry best practice and that really addresses the problems faced by our customers.
About airline.One

The world’s number 1 aviation fuel management platform

airline.One brings together data from all your systems and teams into one specialized platform, to help you more effectively plan, source, monitor and correctly account for your largest expense – fuel. That means you will save time and money.

Key features

Fuel data repository

airline.One brings together large amounts of disparate data from different systems and teams into a single database. It provides all the data you need to do your job so you become more efficient. Pre-built and customizable integration points allow the consolidation of fuel, operations, finance, procurement and other related data.

Intuitive reporting and analytics

Intuitive dashboards help you see the ‘big picture’ – such as fuel volume and cost month by month – but you can drill down for ultimate detail, such as volume and cost for each leg.

Market data management

Fuel prices can download automatically every day from providers such as Platts, OPIS and Global Insight. Index-based contracts automatically update when this market data is downloaded, saving you time.

Automated data capture

Reduce manual tasks by electronically capturing information such as actual flight event data, fuel volumes at various stages (before fueling, off blocks, on blocks etc), and fuel ticket data. All data is verified against reference data and statistics to ensure it’s correct.

Automated invoice verification and tendering

Invoices are automatically checked against all operational and commercial data, preventing over-paying and saving time. Tenders can be created quickly using data from volume forecast plans and tender profiles, then you can capture and normalize the bids to see which is the best.

Flexible infrastructure and deployment options

The platform contains a number of modules designed to automate specific fuel processes and you can choose the modules that suit your business needs. airline.One is usually offered as Software As A Service (SAAS) and can be hosted in the Cloud or in a data center.
For further information or to request a demonstration, then please contact us:

- +49 (511) 49605 0
- info-emea@fuelplus.com
- www.fuelplus.com